

Practical approaches on estimating uncertainty

V. Blujdea, G. Grassi

JRC's KP LULUCF workshop, 27-28 February -1 March 2013, Ispra (IT)

UNFCCC requirements on uncertainty estimates

Parties shall quantitatively estimate the uncertainties ... using at least the tier 1 method

Uncertainty estimation ... purpose is to 'help prioritizing efforts to improve the accuracy of national inventories and guide decisions on methodological choice' ...

but inevitably ...

- ... allow assessing the quality of "emission reduction"
- ... helps verification (especially with independent estimates)

General statistical knowledge

Populations descriptors

Data comes from random/non-systematic/heterogenous data pools (small sets) This is often the case for: BEFs, root-to-shoot , SOC, wood density Mean, STD provide variability of the population, thus overestimation of the uncertainty

Variable can have any type of distribution

Inferential statistics of the estimate

Data from systematic studies (representative, large sampling)

Mean, SEM, normal distribution

Provides 'true uncertainty of the estimate' as CI95%

This is for: NFI data on standing stock, annual growth, dead wood, SOC,

Gathering data on uncertainty

- Datasources should provide **basic statistical parameters** (quantitative appropriate, qualitative
 need further processing)
- Need of information on available data
 - main issue is covariation/correlation among parameters
 - allows correct interpretation of results, potential improvements
- A **small set of data** may be enough for 1st order conclusion
- Expert elicitation (little used! e.g. min, max, mean are generally known)

IPCC guidelines (IPCC 2000, 2003, 2006)

- offer 'step by step' estimation approach as spreadsheet for Tier 1, advice for Tier 2

- default values (uncertainty as 2*STD)

Tier 1 – error propagation is enough! (Excel spreadsheets following Table 6.1 GPG 2000)

Tier 2 – re-simulations (dedicated tools, but very flexible in terms of input's distribution types, copes well with limited information, easy account of covariations/correlations

Calculation considerations

- Uncertainty estimation follows computation pathway of the GHG inventory !
- Removal/emissions uncertainty depends on the amounts involved and on method used
- Uncertainty of major contributors is most important (LB vs. SOM/DOM)
- Multiplications result in asymmetric distributions
- Aggregations (sum, difference) result in normal distributions
- Assuming normal for asymmetric distributions results in shifts of bounds, over/underestimation of the uncertainty (mostly affects absolute, not relative uncertainty)

Calculation considerations

- Monte Carlo best / realistic estimate is computed based on most likely value (i.e. mean) and 2.5/97.5% bounds, because involving StDev yields overestimation due to outliers in the outputs
- Covariation table is very important. e.g. at country level data from NFI is correlated in time (repetitive sampling, parameters from proxies) in space (e.g. AD for LB, SOM, DW)

Relative uncertainty on land conversions is significant

SOM change = small change vs. large stocks

Ex: soil C stock change in AR on grassland Baseline C stock (±39%) Actual C stock (±47%) Steck difference (±363 %)

Uncertainty of KP accounted amount ≠ UNFCCC inventory

EU 15 LULUCF sector		Net CO2	t EU 15 eq 2010	Trend E 1990-cu	U 15 rrent	Net EU 27 CO2eq 2010	Trend EU 2 1990-currei	7 nt
Total EU E/R		-1!	56280	13,4ª	%	-286923	6,4%	
Absolute low (0.025)		-203373		-26,9%		-337704	-16,9%	
Absolute up (0.975)		-108670		77,9%		-236723	36,7%	
Uncertainty (%)	Uncertainty (%)		30 %			18%		
Uncertainty low (0.025)		23%				15%		
Uncertainty up (0.975)		43%				21%		
E/R category	5A	1	5A2	5	5B1	5B2	5C1	5C2
Total E/R on land category	2290	028	2789	5 -2.	1621	-27773	-8620	6213
Absolute low (0.025)	1977	75	20883	-4	9468	-34394	-19920	-7433
Absolute up (0.975)	2597	'89	35007	5	5276	-21183	2652	20053

		14/0	23 /0	12/ /0	27/0	IJI /U	221 /0
	Uncertainty low (0.025)	12%	20%	-1088%	-31%	-1205%	-2138%
	Uncertainty up (0.975)	16%	33%	819%	-19%	940%	1923%
_					_	<i>.</i>	

-177%

-74%

• Accounting rules affect uncertainty of KP accounting amount (17%)

250%

110%

Incortainty (%)

- We may assume that application of "not a source" introduces insignificant uncertainty to accounting amount (although such removals are expected negligible), at least for FM
- FM cap would anyway be reached with highest accuracy even considering the uncertainty of annual sink estimates

-1210/

European Commission

2210%

Recommendations

Tier 1 spreadsheet is enough to estimate uncertainty

Approach the experts for data

Pls provide explicit uncertainty estimate on *each pool change and land subcategory*

Focus on major contributors (key categories)

Uncertainty discussions on 'KP support project' on Wikidot

