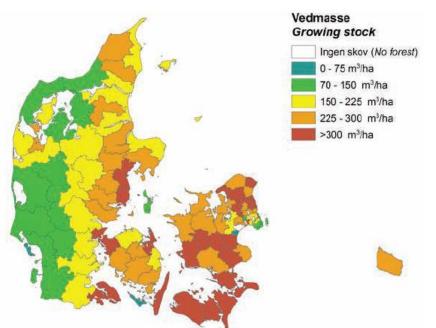


Challenges in establishing FRL with limited data for a highly diverse and fragmented forest area


Vivian Kvist Johannsen, Denmark 2018.05.17

UNIVERSITY OF COPENHAGEN

Outline

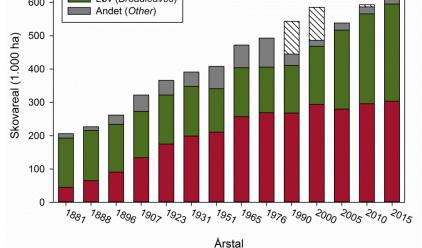
- 1. Forest Reference Level setting the scene
- 2. Limitation of data
- 3. Diversity of the forest area
- 4. Differences in old and new forests
- 5. Implications for FRL the need for sufficient data to produce a valid prediction
- 6. Preliminary results
- 7. Challenges in establishing FRL

Forest Reference Level - setting the scene

Some key points: Reference periode: 2000-2009 Forest management area AND afforestation > 20 year Constant rate of assortement - use wood/energy wood. Include HWP

Business as usual - yet including some adopted policies (from when?) and sustainable forest management

Limitation of data

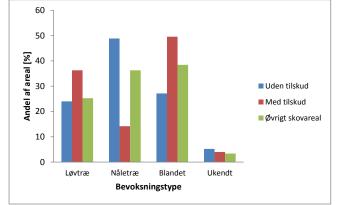

National Forest Inventory - Denmark: Starting date: 2002 Grid density: 1 plot per 100 ha Inventory cycle: 5 years (continous with partial replacement) Plots per inventory cycle: approx 9.500 plots Permanent plots: 1/3 - approx 3.100 plots

Number of remeasured plots within the reference periode: approx 1.900 plots (3/5 of a second rotation)

We try to include NFI data including data from 2017 - ie after the reference periode

Diversity of the forest area

Forest area (2016): 625.000 ha Result of afforestation over 200 years Highly manipulated - 57 species recorded Number of forest owners: 23.000 - 80 % of area private Higly fragmented forest areas: 1/3 core forest (100 m limit) Data from one NFI cycle: 700 112.000 diameters Nål (Conifers) øv (Broadleaves) 600 Andet (Other) 25.000 heights 500 400 And other data



Differences in old and new forests

Old forests - before 1990 Intensive management in 90 % - exstensive in 10 % Many excotic species used Highly manipulated Models of growth and management exist based on experiments

New forests - after 1990

- New species compositions
- New soil types
- New forest owners
- New forest management

Figur 1. Skovrejsningsarealet fordelt til bevoksningstype for skovrejsningstyperne. Fordelingen for det øvrige skovareal (skov etableret før 1990) er indsat som reference.

Implications for FRL

Total forests for reporting

Area

OLD FOREST	AR >30	AR > 20	AR < 20
------------	--------	---------	---------

Stock

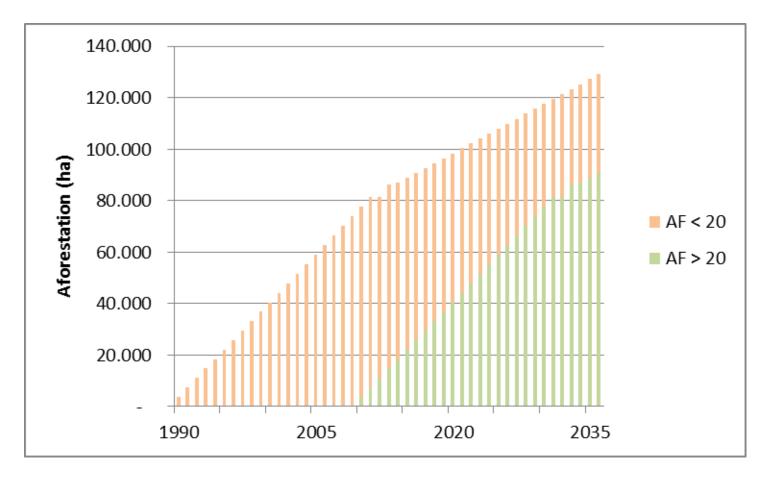
OLD FOREST	AR >30	AR > 20	<

Changes

OLD FOREST	AR >30	AR > 20	AR < 20
---------------	--------	---------	------------

Implications for FRL

Total forests for reporting


Area

	OLD FOREST	AR >30	AR > 20	AR < 20
Stock	FRL- all .	AR EF	RL>30 ERL	.>20
	OLD FOREST		AR >3	30 AR > 20 <
Changes				
OLD FOREST	AR >30		AR > 20	AR < 20

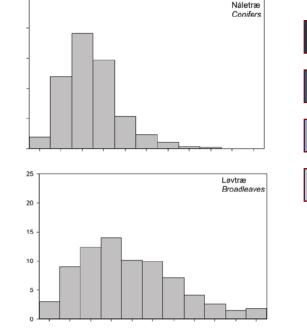
Implications for FRL

Afforestation - transfer to FRL (green label) by age 20

(indication of the changing additional area included in FRL over time - how to include?)

Implications for FRL Reference Level - Danish case

Tabel 6 - 1,900 ha/yr afforestation (declining rate - but included in FRL)


New Reference Level 20 yr	2015-2020	2021-2025	2026-2030	2031-2035
FRF: Forest before 1990				
I (kt CO2/yr)	228	428	548	328
Afforestation > 20 yr				
II (kt CO2/yr)	-617	-705	-852	-907
FRL - All forest > 20 yr				
I + II (kt CO2/yr)	-389	-277	-304	-578
Forest <20 and deforestation:				
(III+IV) (kt CO2/yr)	-37	-49	-17	11
HWP (kt CO2/yr)	-61	-20	-20	-20
Total Forest				
I+II+III-IV (kt CO2/yr)	-426	-326	-321	-568

Preliminary results

What are we doing?

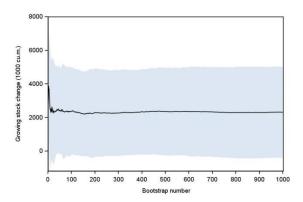
- Single tree analysis
 - Growth of diameter and height
 - Mortality harvest and natural competition
- Plot level analysis
 - Growth of diameter and volume
 - Probability of harvest, mortality and final felling
- Transition models based on trees and plots
 - Diameter, age and volumes

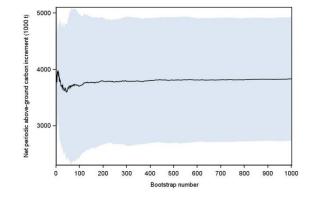
Stratification by species, species groups and growth regions

Diameter distribution - broadleaved and conifers

Preliminary results

How are we doing?


- Single tree analysis
 - Growth models are not converging or producing biologically inlogical predictions
 - Mortality to rare an occurence for a short period to produce a valid model
 - No reproduction of observed data
- Plot level analysis
 - Growth models are not converging
 - Probability of harvest, mortality and final felling are to rare to model so the models produce biologically inlogical results eg markedly dropping of forest carbon pool
 - No reproduction of observed data
- Transition models based on trees and plots
 - Depend on single tree and plot level analysis
 - Still in development


Stratification by species, species groups and growth regions or less detail, causes either to crude models or models resulting in biologically inlogical model results

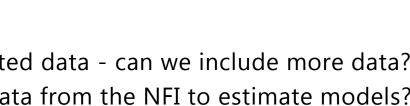
Preliminary results

Uncertainties in FRL and monitoring due to:

- Rate of afforestation
- Mixed effects of global environmental and climate change effects
- Reporting interval
- Estimats of change
 - Uncertainty 60-86 % if based on annual reporting
 - Uncertainty 15 % if based on 5 year reporting

Challenges in establishing FRL

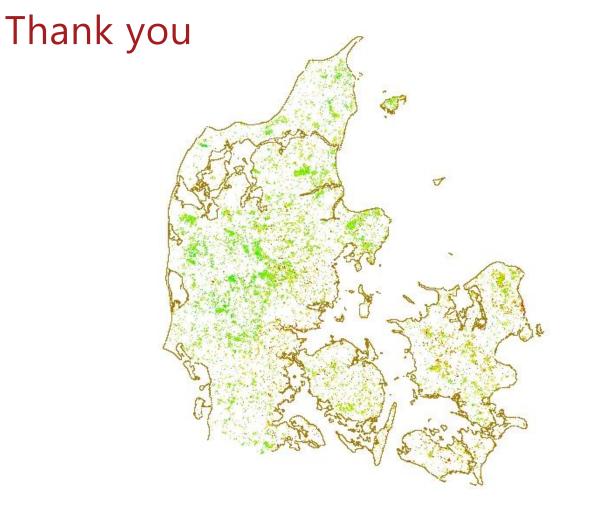
We have limited data - can we include more data?


- 1. More data from the NFI to estimate models?
- 2. Previous surveys? (different definitions)
- 3. Data from experimental plots on forest management? (1852-2017)
- 4. Data from afforestation and growth of these based on other data?

Reference period of 10 years for forestry is equivalent to setting 1/4 lap in the first exercise session in Monaco F1 as the base for the final starting grid! Unless you include data outside the reference periode.

IF we are to produce a valid FRL to give the basis for including Forests sinks accurately in the mitigation of the climate change, we are in for a busy year! Good ideas and sound solutions are welcome!

AND - don't forget the requirement to be consistent with the reporting


2018/05/17 14

References:

Identifying potential uncertainties associated with forecasting and monitoring carbon sequestration in forests and harvested woodproducts / Johannsen, V. K., Nord-Larsen, T., Vesterdal, L., Suadicani, K., & Callesen, I. Department of Geosciences and Natural Resource Management, University of Copenhagen. (IGN Report / Department of Geosciences and Natural Resource Management, June 2017)

Skove og plantager 2016 / Thomas Nord-Larsen, Vivian Kvist Johannsen, Marie Frost Arndal, Torben Riis-Nielsen, Iben Margrete Thomsen, Kjell Suadicani og Bruno Bilde Jørgensen / Institut for Geovidenskab og Naturforvaltning, Københavns Universitet, Frederiksberg. 104 s. ill.