

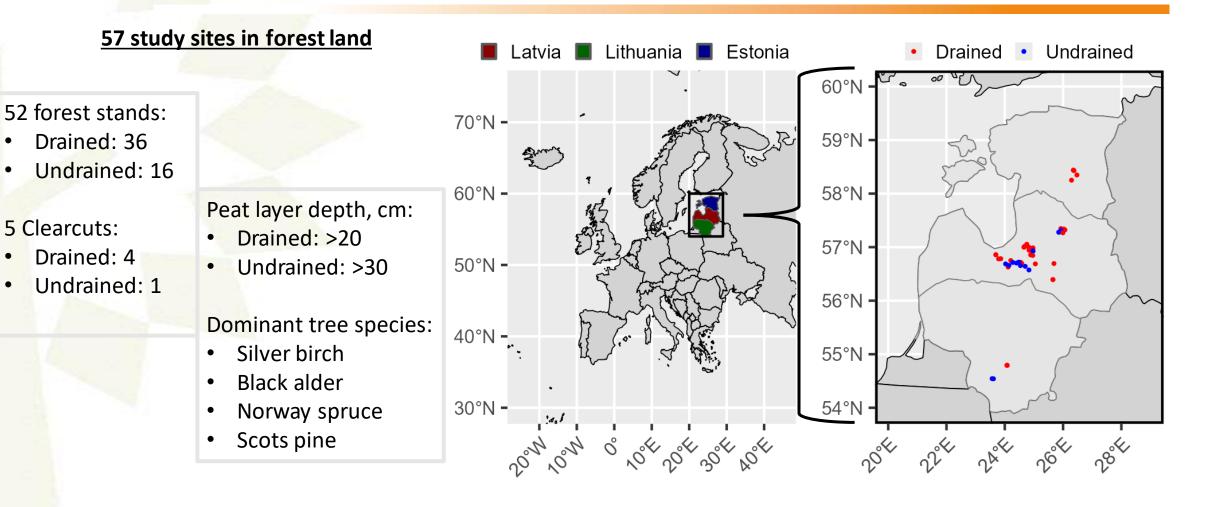
GHG emissions from drained versus undrained organic soil:

is it consistent with IPCC Guidelines to report GHG emissions from drained soil rather than the impact of drainage

Aldis Butlers, Latvian State Forest Research Institute "Silava" JRC LULUCF Workshop, JRC - Ispra

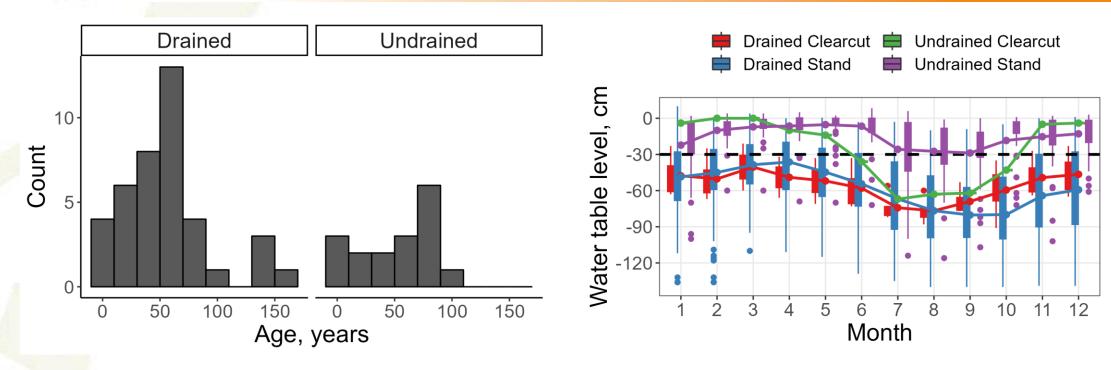
22 and 23 May

Presentation content



Introduction with results of recent studies on drained and undrained hemiboreal forest organic soil C balance and GHG emissions:

- LIFE OrgBalt Demonstration of climate change mitigation measures in nutrients rich drained organic soils in Baltic States and Finland:
 - Butlers A., Laiho R., Soosaar K., Jauhiainen J., Schindler T., Bārdule A., Kamil Sardar M., Haberl A., Samariks V., Vahter H., Lazdiņš A, Čiuldienė D, Armolaitis K., Līcīte I. Soil and forest floor carbon balance in drained and undrained hemiboreal peatland forests. Manuscript submitted for publishing to Biogeosciences
 - Kamil Sardar M., Schindler T., Vahter H., Butlers A., Vigricas E., Kull A., Līcīte I., Bārdule A., Čiuldienė D, Lazdiņš A., Jauhiainen J., Mander Ü., Laiho R., Soosaar K. Emission factors of soil CH4 and N2O from drained and undrained hemiboreal peatland forests. Manuscript in preparation
- LV MNKC Elaboration of guidelines and modelling tool for greenhouse gas (GHG) emission reduction in forests on nutrient-rich organic soils
 - Butlers A., Lazdiņš A., Kalēja S., Bārdule A. (2022). Carbon Budget of Undrained and Drained Nutrient-Rich Organic Forest Soil. Forests, 13(11), 1790. **DOI: 10.3390/f13111790**
 - Butlers A., Lazdiņš A., Kalēja S., Purviņa D., Spalva G., Saule G., Bārdule A. (2023). CH4 and N2O Emissions of Undrained and Drained Nutrient-Rich Organic Forest Soil. Forests, 14(7), 1390. DOI: 10.3390/f14071390



Soil C balance and GHG emission monitoring sites

Age of forest stands and water table level

Age, years	Min	Q1	Mean ± SD	Q3	Max
Drained	14	41	64 ± 36	71	162
Undrained	10	40	58 ± 26	78	96

Mean WTL, cm	Min	Q1	Mean ± SD	Q3	Max
Drained	159	79	61 ± 30	39	20
Undrained	83	28	25 ± 22	12	4

Measured fluxes

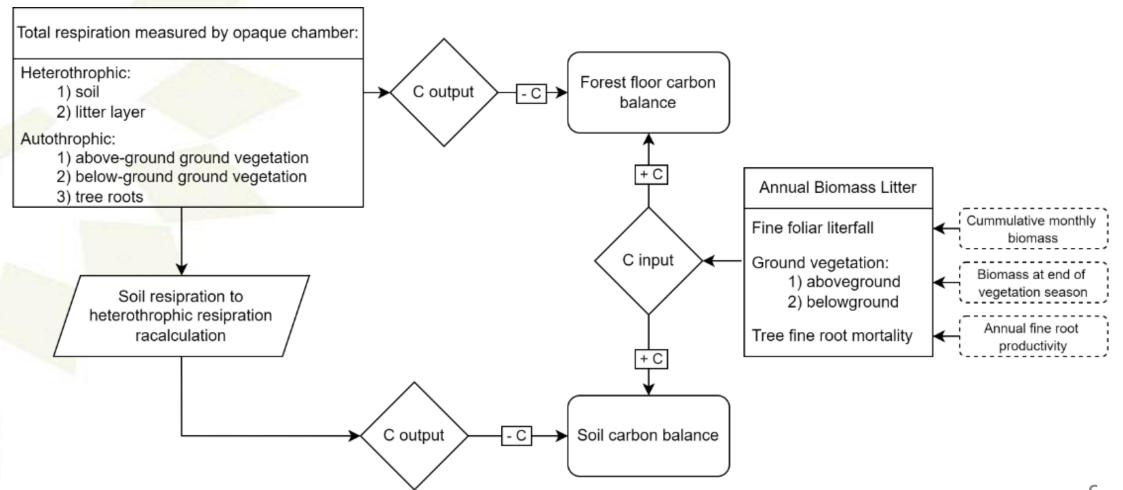
<u>C input to soil:</u>

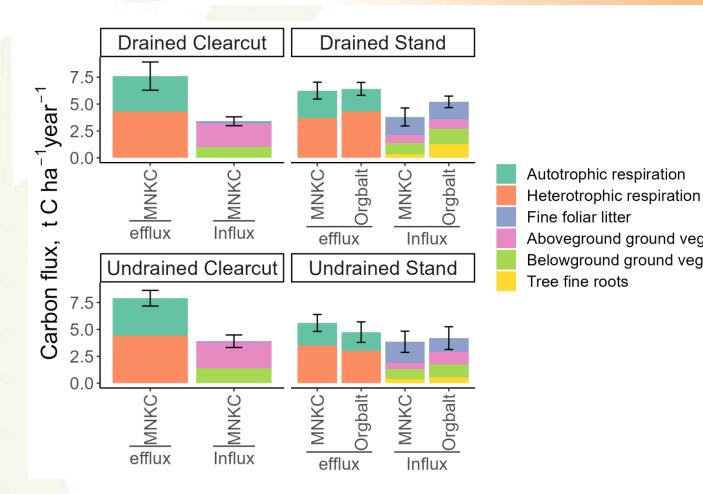
- Foliar fine litter;
- Ground vegetation;
- Fine roots of trees

Soil GHG emissions:

- Heterotrophic respiration
- Total respiration
- CH_4 and N_2O

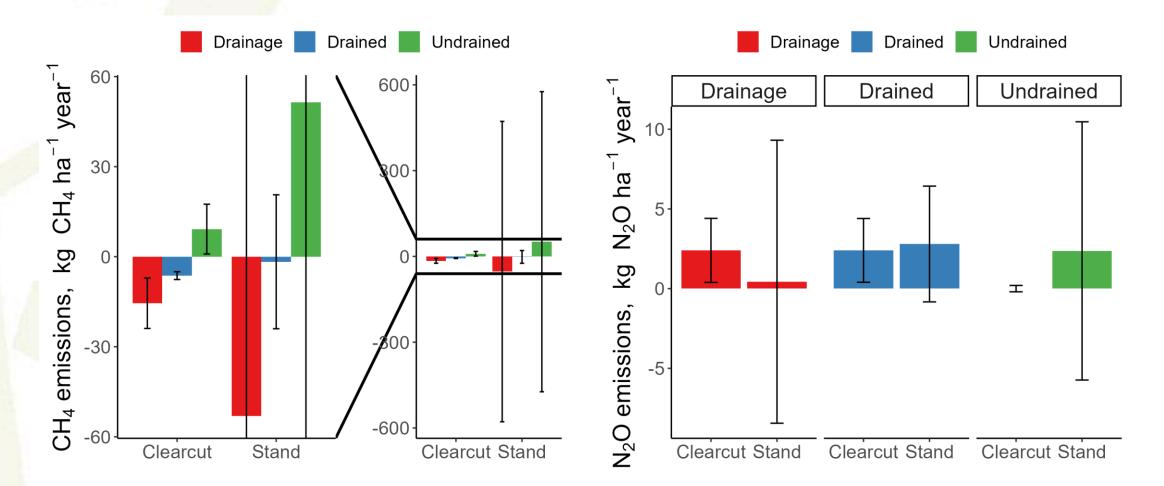
+ auxiliary data





Soil and forest floor C balance estimation

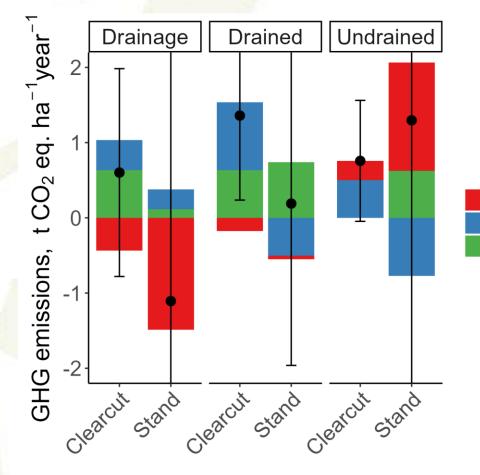
Soil and forest floor C balance


	C balance in <u>clearcut</u> *	Drained	Undrained	Drainage impact
	Forest floor	-4.2±2.2	-4.0±1.33	-0.2±2.61
Autotrophic respiration	Soil	-0.9±0.7	-0.4±0.4	-0.4±1.25
Heterotrophic respiration Fine foliar litter	Mean	-2.55±2.45	-2.25±1.54	-0.3±2.89
Aboveground ground vegetation Belowground ground vegetation				
Tree fine roots	C balance in <u>stand</u> *	Drained	Undrained	Drainage impact
	Forest floor	-1.75±1.83	-1.12±2.34	-0.64±2.97
	Soil	0.51±1.82	0.77±1.87	<mark>-0.27±2.61</mark>
	Mean	-0.63±2.58	-0.17±3.00	-0.45±3.96

*Negative values indicate C loss, t C ha⁻¹ year⁻¹

7

Soil CH₄ and N₂O emissions



GHG emissions in CO₂ equivalents (AR5)

CH4

CO2 N2O

t CO ₂ eq. ha ⁻¹ year ⁻¹	Drained	Undrained	Drainage impact
Stand	0.19 ± 2.15	1.30 ± 14.97	-1.11 ± 15.12
Clearcut	1.36 ± 1.12	0.76 ± 0.80	0.60 ± 1.38

Pros and Cons of Estimating Relative Anthropogenic GHG Emission Impact

Advantages and Challenges:

- Comparing GHG emissions from drained and undrained sites offsets potential estimation biases
- More accurate estimate of drainage's human-induced climate impact, avoiding overestimation of emissions
- More empirical data needed, • consequently requiring the combination of relevant uncertainties

Opportunities:

- Enables a more accurate comparison of projected impacts resulting from climate change mitigation measures
- Mitigates the risk of achieving the opposite effect when implementing climate change mitigation measures

