An introduction to Geospatial data for GHG emissions estimations

Simone Rossi

European Commission Joint Research Centre

JRC LULUCF Workshop 2019 - Varese, Italy - 28-29 May 2019

- Requirements under Reg.841 and IPCC Approach 3
- Some basic Geospatial data concepts
- Overview of the datasets available
- Competences needed at the country level to use these data

Requirements under Reg.841 and IPCC Approach 3

METHODOLOGICAL REQUIREMENTS Reg. 2018/841

Art.18 amends Reg.525/2013 adding (among other):

(4) The following Annex is inserted:

'ANNEX IIIA

Methodologies for monitoring and reporting referred to in point (da) of Article 7(1)

Approach 3: Geographically-explicit land-use conversion data in accordance with the 2006 IPCC Guidelines for National Greenhouse Gas Inventories.

METHODOLOGICAL REQUIREMENTS Reg. 2018/841

Tier IPCC value	1 C default les A	Cropland National area statistics, Annual (or annualised) LUC stats combined with IPCC default values – basic entr Grassland Sing default IPCC values Approach 1		Geo-information, time series, default values – weak, but better than App 1 and 2 Approach 3
	A	pproach 1	Approach 2	Approach 3
	N	ational statistics	Land Use Change matrix	Geo-tracked

Improved Coverage and Representation

Approach 3 for Land Representation

From the IPCC Guidelines:

"Approach 3 is both spatially and temporally consistent and explicit

The main advantage of spatially-explicit data is that analysis tools such as <u>Geographic</u> <u>Information Systems</u> can be used to link multiple spatially-explicit data sets (such as those used for stratification) and describe in detail the conditions on a particular piece of land prior to and after a land-use conversion."

Table 3.6A (IPCC 2019 Refinement)		
Method Approach 3 Examples		
Sample based methods	 Permanent and consistent georeferenced ground plots. Continuous and consistent samples using remote sensing data. 	
Survey-based methods	Specific survey designs that identify activities through time for each land unit within a known region.	
Wall-to-Wall methods	Tracking pixels / land units using time- series consistent data.	*** ***

European Commission

Some basic Geospatial data concepts

What is a "Spatially-explicit" data?

(roads, etc.)

The two data models of Geospatial Data: Raster vs. Vectors

Vectors

Vector data are tipically used to represent land units, boundaries, points, line features. An attribute table is associated with entrances for each land unit.

Examples:

- surveys (e.g. in homogenous land units, or point samples)
- cadastral maps
- administrative maps.

Attribute tables

Vectors

Spatial operations can be performed on the vectors.

Formats: Shapefiles (.shp), Google Earth files (.kmz, .kml)

Spatial operations

About Merge

This operation appends the features of two or more themes into a single theme. Attributes will be retained if they have the same name.

About Intersect

This operation cuts an input theme with the features from an overlay theme to produce an output theme with features that have attribute data from both themes.

About Dissolve

This operation aggregates features that have the same value for an attribute that you specify.

Vectors

Example: the Land Parcel identification System (LPIS)

A vector layer with all the Land Parcels, with attribute tables describing each parcel.

Rasters

Raster data

Data are recorded as pixel units in a grid. Each pixel has a value associated.

Examples:

- Photographs
- Remote Sensing and derived products
- Geo-statistical spatialization of sample data

These are the data generally used in Geospatial modelling: the model is applied within each pixel.

GIS analyses: Overlaying different layers to obtain new information

Remote Sensing

Remote Sensing (RS) is a series of techniques and tools for the collection of information about an object without coming into physical contact with that object.

Remote Sensing: from radiation to products

Level 1

MODIS Raw Radiances

Remote Sensing (RS) is a series of technic MODIS Calibrated Radiances MODIS Geolocation Fields the collection of information about an obje into physical contact with that object. MODIS Calibrated Radiances MODIS Geolocation Fields MODIS Atmosphere Product MODIS Atmosphere Product MODIS Total Precipitable Wat

RS measures <u>radiation</u> <u>...NOT</u> vegetation state, growth stage, etc.!!!

Radiation data have to be interpreted and "translated" into meaningful information.

"The inverse problem": how the characteristics which we want to investigate are correlated with the radiation: from radiation to its cause.

Mosaic herbacious cover, tree and shrub, and/or cropland

MODIS Geolocation Fields MODIS Atmosphere Products MODIS Aerosol Product MODIS Total Precipitable Water MODIS Cloud Product MODIS Atmospheric Profiles MODIS Atmosphere Joint Product MODIS Atmosphere Gridded Product MODIS Cloud Mask MODIS Land Products MODIS Surface Reflectance MODIS Land Surface Temperature and Emissivity (MOD11) MODIS Land Surface Temperature and Emissivity (MOD21) MODIS Land Cover Products MODIS Vegetation Index Products (NDVI and EVI) MODIS Thermal Anomalies - Active Fires MODIS Fraction of Photosynthetically Active Radiation (FPAR) / Leaf Area Index (LAI) MODIS Evapotranspiration MODIS Gross Primary Productivity (GPP) / Net Primary Productivity (NPP) MODIS Bidirectional Reflectance Distribution Function (BRDF) / Albedo Parameter MODIS Vegetation Continuous Fields MODIS Water Mask MODIS Burned Area Product

MODIS Cryosphere Products MODIS Snow Cover

MODIS Sea Ice and Ice Surface Temperature

MODIS Ocean Products

MODIS Sea Surface Temperature MODIS Remote Sensing Reflectance MODIS Chlorophyll-a Concentration MODIS Diffuse Attenuation at 490 nm MODIS Particulate Organic Carbon MODIS Particulate Inorganic Carbon MODIS Normalized Fluorescence Line Height (FLH) MODIS Instantaneous Photosynthetically Available Radiation MODIS Daily Mean Photosynthetically Available Radiation tive RS radar)

ropean mmission

Example of Stratification

Criteria: Land Use, Climate, Global Ecological

Zone, Soil

Classes identified: 2016

Existing classes: 651

Strata	GEZ	soil	climate	n. pixels
1	Tropical rainforest	Organic	Warm Temperate Moist	0
2	Tropical rainforest	Organic	Warm Temperate Dry	0
3	Tropical rainforest	Organic	Cool Temperate Moist	0
4	Tropical rainforest	Organic	Cool Temperate Dry	0
5	Tropical rainforest	Organic	Polar Moist	0
6	Tropical rainforest	Organic	Polar Dry	0
7	Tropical rainforest	Organic	Boreal Moist	0
8	Tropical rainforest	Organic	Boreal Dry	0
9	Tropical rainforest	Organic	Tropical Montane	15
10	Tropical rainforest	Organic	Tropical Wet	3276
11	Tropical rainforest	Organic	Tropical Moist	1107
12	Tropical rainforest	Organic	Tropical Dry	53
13	Tropical rainforest	Sandy	Warm Temperate Moist	0
14	Tropical rainforest	Sandy	Warm Temperate Dry	0
15	Tropical rainforest	Sandy	Cool Temperate Moist	0
16	Tropical rainforest	Sandy	Cool Temperate Dry	0
17	Tropical rainforest	Sandy	Polar Moist	0
18	Tropical rainforest	Sandy	Polar Dry	0
19	Tropical rainforest	Sandy	Boreal Moist	0
20	Tropical rainforest	Sandy	Boreal Dry	0
21	Tropical rainforest	Sandy	Tropical Montane	14
22	Tropical rainforest	Sandy	Tropical Wet	6809
23	Tropical rainforest	Sandy	Tropical Moist	143
24	Tropical rainforest	Sandy	Tropical Dry	5
2012	Water	Other	Boreal Dry	0
2013	Water	Other	Tropical Montane	0
2014	Water	Other	Tropical Wet	0
2015	Water	Other	Tropical Moist	0
2016	Water	Other	Tropical Dry	0

Remote Sensing

Important things to consider:

- Spatial resolution (minimum mapping unit)
- Temporal resolution
- (Spectral resolution)

Spatial data processing

Know-how

- Algorithms development
- Expertise in GHG Inventory methodologies

Software:

- GIS software (e.g. ArcGIS, QGIS, gvSIG)
- Image Processing software (e.g. ENVI, ERDAS)
- Geodatabases (PostGIS/PostgreSQL)

Programming languages

- e.g. R, IDL, Python
- Cloud computing platforms (Google Earth Engine)

Infrastructures

Cluster/grid computing infrastructures (JRC JEODPP)

Overview of the available datasets

Geospatial data for land use tracking and GHG estimations

Geospatial data and in particular Remote sensing imagery is extensively used to monitor forests areas and deforestation in Developing Countries (REDD+).

Applications in LULUCF is still limited, although some examples exist (e.g. Australia GHGI with Landsat 1972-2018)

Ortophotos are often used in preparing NFIs

Integration of remote-sensing and ground-based observations for estimation of emissions and removals of greenhouse gases in forests

Geospatial data: limitations

Important things to consider:

Definitions

GHG land categories are defined at the MS level with varying thresholds for e.g. tree crown cover in forests. Is the dataset I'm using compatible?

• Spatial resolution (minimum mapping unit)

Spatial resolution is a key element to consider in order to verify if a dataset can be used for GHG inventories, also depending on the variable considered. Is the minimum area mapped compatible with the dataset I'm using?

Temporal resolution

We need to produce yearly inventories: certain data can remain stable (e.g. soil), but others might change continuously (e.g. land use)

Way forward: integration of RS with surveys

Member State	Area (ha)	Tree crown cover (%)	Tree height (m)
Belgium	0,5	20	5
Bulgaria	0,1	10	5
Czech Republic	0,05	30	2
Denmark	0,5	10	5
Germany	0,1	10	5
Estonia	0,5	30	2
Ireland	0,1	20	5
Greece	0,3	25	2
Spain	1,0	20	3
France	0,5	10	5
Croatia	0,1	10	2
Italy	0,5	10	5
Cyprus	0,3	10	5
Latvia	0,1	20	5
Lithuania	0,1	30	5
Luxembourg	0,5	10	5
Hungary	0,5	30	5
Malta	1,0	30	5
Netherlands	0,5	20	5
Austria	0,05	30	2
Poland	0,1	10	2
Portugal	1,0	10	5
Romania	0,25	10	5
Slovenia	0,25	30	2
Slovakia	0,3	20	5
Finland	0,5	10	5
Sweden	0,5	10	5
United Kingdom	0,1	20	2

ANNEX I

Geospatial data: some possible uses

Remote sensing

- Land use mapping
- Selection of sample points
- Used in conjunction with land surveys for land tracking or in the construction of biomass density maps.
- Retrieval of variables relevant for constructing and validating allometric models.
- Spatial datasets
 - Soil (LUCAS Topsoil, HWSD)
 - Agricultural management (LPIS)

Overview of the datasets available

- "Classic" datasets suggested by the IPCC
- ESA Climate Change Initiative
- Copernicus
- Other recent datasets

<u>NB:</u> not all the data that will be presented are adequate for use in EU inventories, essentially due to spatial resolution constraints!!!

Spatial data suggested by the IPCC Guidelines

Soil map

HWSD map reclassified to match IPCC soil categories

Spatial data suggested by the IPCC Guidelines

Ecological zones (based on climate and vegetation)

FAO Global Ecological Zones

Spatial data suggested by the IPCC Guidelines

Climate maps

JRC-IPCC Climate map

ESA Climate Change Initiative

"The objective of the CCI programme is to realize the full potential of the long-term global Earth Observations archives that ESA together with its Member States have established over the last 30 years, as a significant and timely contribution to the "Essential Climate Variables" databases required by the UNFCCC. An ECV is a physical, chemical or biological variable or a group of linked variables that critically contributes to the characterisation of Earth's climate."

ESA CCI Land Cover

ESA CCI Land Cover			
Producer	ESA, University of Louvain		
Pixel size	300 m		
Years	1992-2015		
Source data	MERIS, AVHRR, SPOT, PROBA-V, ASAR		
Description	FAO LCCS Land Cover classes		
Link	https://www.esa-landcover-cci.org/		

Remapping LCCS classes into IPCC Land Use categories

ESA CCI Land Cover higher resolution prototypes

ESA CCI High-Res Land Cover Africa 2016 (Prototype)

Producer	ESA, University of Louvain
Pixel size	20 m
Years	2016
Source data	ESA Sentinel 2A
Description	10 LC classes
Link	http://2016africalandcover20m.esrin.esa.i nt/viewer.php

ESA CCI Land Cover higher resolution prototypes

Tree cover areas

Shrub cover areas

Grassland

Cropland

Vegetation aquatic or reg. flooded

Sparse vegetation

Bare areas

Built-up areas

Snow and/or Ice

Open water

1000	ESA CCI High-Res LC MesoAmerica 2016 (Prototype)				
	Producer	ESA, University of Louvain			
	Pixel size	10 m			
	Years	2016-2017			
	Source data	ESA Sentinel 2 A & B			
	Description	10 LC classes			
	Link	http://2016africalandcover20m.esrin.esa.i nt/viewer.php			
		European Commission			

ESA CCI+ High Resolution Land Cover

The project will start next year and will focus on three test areas in South America, West Africa and Siberia.

The goal is to bring the spatial resolution of ESA CCI products at 10 m spatial resolution.

The Copernicus Programme

Copernicus is the European Union's Earth Observation Programme, managed by the European Commission. It's implemented in partnership with Member States, ESA, ECMWF, EUMETSAT, and others. Data are freely available.

Copernicus is served by a set of dedicated satellites (the Sentinel families) and other satellites, as well by in-situ and airborne measurements.

Copernicus Global: 100m Global Land Cover (just released)

COPERNICUS Global LC 100m			
Producer	Copernicus/EEA		
Pixel size	100 m		
Years	2015-2019, annual updates		
Source data	Proba-V		
Description	fractional cover layers for 10 land cover classes, 80% accuracy		

	6 TADAS	MAUNK	A PACALL
	Closed forest	Open forest	Other Land Cover
	Evergreen needle-leaved	Evergreen needle-leaved	Shrubland
	Deciduous needle-leaved	Deciduous needle-leaved	Herbaceous vegetation
Varese a an and the	Evergreen broadleaved	Evergreen broadleaved	Herbaceous wetland
Provide Management of Provide Law	Deciduous broadleaved	Deciduous broadleaved	Moss & lichen
	Mixed type	Mixed type	Bare / sparse vegetation
and the second	Unknown type	Unknown type	Cropland
A BAR CAS ALL THE S		e te server	Built-up
	PARK SALE	Str. C. Heller Co.	Snow & ice
× 2015	and the participant		Permanent water bodies

Copernicus Pan-European: CORINE LC and LC change

	CLC1990	CLC2000	CLC2006	CLC2012	CLC2018
Satellite data	Landsat-5 MSS/TM single date	Landsat-7 ETM single date	SPOT-4/5 and IRS P6 LISS III dual date	IRS P6 LISS III and RapidEye dual date	Sentinel-2 and Landsat- 8 for gap filling
Time consistency	1986-1998	2000 +/- 1 year	2006+/- 1 year	2011-2012	2017-2018
Geometric accuracy, satellite data	≤ 50 m	≤ 25 m	≤ 25 m	≤ 25 m	≤ 10 m (Sentinel-2)
Min. mapping unit/width	25 ha / 100m	25 ha / 100m	25 ha / 100m	25 ha / 100m	25 ha / 100 m

Copernicus Pan-EU: Next Generation CORINE (CLC+, CLCheritage) (in preparation)

	COPERNICUS CLC -	and CLC-heritage	
	Producer	Copernicus/EEA	
CLC-Backbone	Pixel size	10-20 m (0.5/1 ha MMU) CLC+, 100m (25 ha for status, 5 ha for changes) CLC- heritage	
EAGLE data model CLC-Core	Years	2018 onwards every 3 years (CLC+) Background compatibility (CLC-heritage)	
Existing CLC	Source data	Sentinel 2A&B, Landsat 8, Sentinel 1 (radar)	
	Description	fractional cover layers for 10 land cover classes, 80% accuracy	

"The CLC+ is expected to support the LULUCF reporting obligations from 2021"

Copernicus Pan-European High Res: 20m Forest

COPERNICUS Pan-EU HRL Forest

Producer	Copernicus/EEA	
Pixel size	20 m (MMU: 0.5 ha)	
Years	Status map 2015 and changes 2012 – 2015	
Source data	Sentinel 2A, Landsat 8, SPOT-5 and ResourceSat-2.	
Description	 Tree cover density (TCD) (level of tree cover density in a range from 0-100%) Dominant leaf type (DLT) (broadleaved or coniferous majority) 	
HRL_Tree_Cover_Density_2012 Tree Cover Density 2012 100m All Non Tree Areas 1 - 20 % 21 - 40 % 41 - 60 % 61 - 80 % 81 - 100 % Unclassifiable Outside Area	 Hausanne Geneval Von Aosta Genoble Stym 	irento Bergano ovara Milan Brescia Verona

ssion

Copernicus Pan-European High Res: 20m Grassland

		COPERNICUS Pan	-EU HRL Grassland	
	Producer		Copernicus/EEA	
	Pixel size		20 m and 100 m	
	Years		2014-2016	
	Source data		Sentinel-2A, Sentinel-1A and B and Landsat 8 OL + radar IRS-P6 LISS-3 (ploughing)	
	Description		 Grassland map Ploughing indicator 	
HRL_Grassland_2015 HRL_Grassland_2015_100m All non-grass areas Grassy and non-woody vegetation		+	EDNITE KING DO M Belfast	Newcas upon Ty
Unclassifi image ava shadows, Outside a	able (no satellite ailable, or clouds, or snow) rea		Douglas Irish Sea	Leed Manchester

A Dublin

n

COMMISSION

Liverpool

Global Forest Change 2000–2018 (Hansen)

France: National yearly land cover map at 10m (Sentinel 2 A&B + LPIS)

• Annual Crops

- 1. Summer Crops
- 2. Winter Crops
- Perennial Crops
 - 3. Intensive grasslands
 - 4. Vineyards
 - 5. Orchards
- Forests
 - 6. Broad-leaved
 - 7. Conifer
- Low natural vegetation
 - 8. Natural grasslands and pastures
 - 9. Woody moorlands

- Artificial

 Continuous urban
 Discontinuous urban
 Discontinuous urban
 Commercial and industrial units
 Roads and asphalt surfaces

 Natural mineral surfaces

 Bare rocks
 Sand and dunes

 Other

 Water bodies
 Glaciers and eternal snow

 Extension to 23 classes

 Summer Crops: Soybean, Sunflower, Corn.
 - Summer Crops: Soybean, Sunflower, Corn, Rice, Root/tuber
 - Winter Crops: Rapeseed, Straw cereals, Protein crops

2014 2015 2016 2017 2018 2019 year

Inglada, J., Vincent, A., Arias, M., Tardy, B., Morin, D., & Rodes, I., Operational high resolution land cover map production at the country scale using satellite image time series, Remote Sensing, 9(1), 95 (2017).

Ongoing JRC research on Forest/LC mapping

Mapping African forests with Sentinel 1 and 2 times series

European Commission

Verhegghen, Jarouskova et al.

An interesting tool

Collect Earth is a tool that enables data collection through Google Earth. Users can analyze high and very high resolution satellite imagery for a wide variety of purposes, including: Support to NFI LULUCF assessments Monitoring agricultural land and urban areas Validation of existing maps •Quantifying deforestation,

reforestation and desertification

Commission

Biomass density maps

•Sensors:

- Optical (canopy properties)
- Lidar (vertical structure)
- Radar (canopy and structure)

BM is estimated from RS signal using empirical models calibrated with ground data.

Example: use in Brazilian GHG Inventory to cover the whole Amazon.

Tier 1 and 3 spatially explicit modelling of CSC in Europe (JRC)

Input to Spatial processing for CO₂ emission/removal

Period Processing

* Land use change from Territorial Reference Scenario 2017

Tier 3 spatially explicit modelling of CSC in Europe (JRC)

LUCAS (Land Use and Coverage Area frame Survey) Topsoil Dataset (JRC/EUROSTAT)

LUCAS Soil component

- ~ 22'000 topsoil samples (0-20 cm)
- main physico-chemical soil properties
- 2009 completed
- 2015 completed
- 2018 sample collected under analysis
- 2021 next

Spatialisation through geostatistics

Burned area datasets

Some products available:

- Copernicus (EFFIS/JRC) burned area products (from MODIS, VIIRS)
- MODIS burned area product (MCD64A1)
- GFED burned areas dataset (1997-2018)
- GFED Global Fire Atlas
- ESA ATSR World Fire Atlas (1995-2012)
- ESA Sentinel-3 World Fires Atlas (Prototype)

Tier 1 estimates: FAOSTAT Methodology (Rossi et al. 2016)

Conclusions

- Several new products are becoming rapidly available for the operational monitoring and tracking of land use/land cover and for other GHG inventory applications at a much higher resolution than before.
- These data are already operationally used in REDD+ activities.
- There is a high potential for their use to obtain a "geographically-explicit" land use tracking as required by Reg.841/2018.
- HOWEVER, it's not THAT simple. It might not be enough to take a nice map to track Land Use changes with an acceptable resolution and reliability.
- Verification and research on possible applications in Europe, also through the integration with ground sampling, would be important.
- Inventory teams should gain the necessary geospatial know-how.

An introduction to Geospatial data for GHG emissions estimations

Thank you for your attention!

